738 research outputs found

    Determining absolute orientation of a phone by imaging celestial bodies

    Get PDF
    The absolute orientation of a phone is of importance in a variety of applications, e.g., navigation, augmented reality, photography, etc. Phone sensors, e.g., gyroscope, etc. can determine relative changes in orientation, but absolute orientation is generally poorly known or unknown. Absolute orientation is not factory-set, and if it is set, requires periodic recalibration. This disclosure provides techniques to determine absolute orientation of a phone by imaging celestial bodies, e.g., sun, moon, etc. Once the absolute orientation is determined, phone sensors measure relative changes in orientation and thereby keep track of absolute orientation

    Potentiation of Recombinant NP and M1-Induced Cellular Immune Responses and Protection by Physical Radiofrequency Adjuvant

    Get PDF
    Nucleoprotein (NP) and matrix protein 1 (M1) are highly conserved among influenza A viruses and have been attractive targets to develop vaccines to elicit cross-reactive cytotoxic T lymphocytes (CTLs). Yet, external antigens are often presented on major histocompatibility complex class II molecules and elicit humoral immune responses. In this study, we present a physical radiofrequency adjuvant (RFA) to assist recombinant NP and M1 to elicit potent CTL responses. We found recombinant NP/M1 immunization in the presence of RFA could elicit potent anti-NP CTLs and confer significant protection against homologous viral challenges, while NP/M1 immunization alone failed to elicit significant CTL responses or confer significant protection. Interestingly, RFA failed to elicit potent anti-M1 CTL responses or anti-NP or anti-M1 antibody responses. Different from RFA, AddaVax adjuvant was found to significantly increase NP-specific antibody responses but not CTLs. NP/M1 immunization in the presence of RFA or AddaVax similarly reduced body weight loss, while only the former significantly increased the survival. We further found NP/M1 immunization in the presence of RFA did not significantly increase serum IL-6 release (a systemic inflammatory mediator) and rather reduced serum IL-6 release after boost immunization. NP/M1 immunization in the presence of RFA did not induce significant local reactions or increase body temperature of mice. The high potency and safety strongly support further development of RFA-based recombinant NP/M1 vaccine to elicit cross-protective immunity

    Vaccine delivery alerts innate immune systems for more immunogenic vaccination

    Get PDF
    Vaccine delivery technologies are mainly designed to minimally invasively deliver vaccines to target tissues with little or no adjuvant effects. This study presents a prototype laser-based powder delivery (LPD) with inherent adjuvant effects for more immunogenic vaccination without incorporation of external adjuvants. LPD takes advantage of aesthetic ablative fractional laser to generate skin microchannels to support high-efficient vaccine delivery and at the same time creates photothermal stress in microchannel-surrounding tissues to boost vaccination. LPD could significantly enhance pandemic influenza 2009 H1N1 vaccine immunogenicity and protective efficacy as compared with needle-based intradermal delivery in murine models. The ablative fractional laser was found to induce host DNA release, activate NLR family pyrin domain containing 3 inflammasome, and stimulate IL-1β release despite their dispensability for laser adjuvant effects. Instead, the ablative fractional laser activated MyD88 to mediate its adjuvant effects by potentiation of antigen uptake, maturation, and migration of dendritic cells. LPD also induced minimal local or systemic adverse reactions due to the microfractional and sustained vaccine delivery. Our data support the development of self-adjuvanted vaccine delivery technologies by intentional induction of well-controlled tissue stress to alert innate immune systems for more immunogenic vaccination
    corecore